<div dir="ltr">Roy Dyckhoff wrote:<span style="color:rgb(153,153,153)"></span><br><span style="color:rgb(153,153,153)"></span><div><span style="color:rgb(153,153,153)">|</span> The novelty is that I reject his argument that there is no touch of<br>
| greater than 5000 changes; I don't claim that there is such a touch, but<br>
| this argument is evidently fallacious.<br><br></div><div>Presumably his proof that there is no true touch of length exactly 5040 with common bobs only is sound though?<br></div><div>I don't think I've ever seen the proof but it seems highly improbable that if there was a mistake in that (most important proof) that nobody would have noticed it by now...<br></div><div>I assume the argument that there is no touch greater than 5000 changes to which you refer is something that he goes onto?<br></div><div><br></div><div>It would be interesting if you could share the paper mentioned with the list?<br></div><div><br></div><div>Alan<br></div><div><br><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On 31 January 2017 at 15:11, Philip Earis <span dir="ltr"><<a href="mailto:pje24@cantab.net" target="_blank">pje24@cantab.net</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">The following is a message from Roy Dyckhoff, who is having technical<br>
difficulties sending messages to this list himself.<br>
<br>
==============================<wbr>====<br>
I have a paper of about 8 pages on Thompson's famous 1886 paper about<br>
bobs-only Grandsire Triples. It begins with (as background) a short<br>
proof of his main result, eschewing both group theory and case analysis.<br>
<br>
The novelty is that I reject his argument that there is no touch of<br>
greater than 5000 changes; I don't claim that there is such a touch, but<br>
his argument is evidently fallacious. Perhaps the search for such a<br>
touch ceased in 1886; but it seems to me that someone might have another<br>
look. Modern computers might ease this tedious task.<br>
<br>
The crucial point is to consider Q-sets as Q-cycles, and to accept his<br>
point that if a row in such a cycle is Plained then the next cannot be<br>
Bobbed. If one sees a touch as determining for each row in a Q-cycle<br>
whether it is Plained, Bobbed, or Absent, then there is the possibility<br>
of patterns such as ABPPP, which has no P immediately followed by a B.<br>
Some of the Q-sets in a long touch will be complete, and so either fully<br>
Plained or fully Bobbed; but some will include changes not in the touch,<br>
and here the argument about "all are Plained or all are Bobbed" falls<br>
down. There is a counterexample of 280 changes to the argument.<br>
<br>
Happy to send the paper to those interested.<br>
<br>
RD<br>
University of St Andrews<br>
<br>
<br>
<br>
<br>
______________________________<wbr>_________________<br>
ringing-theory mailing list<br>
<a href="mailto:ringing-theory@bellringers.net">ringing-theory@bellringers.net</a><br>
<a href="http://lists.ringingworld.co.uk/listinfo/ringing-theory" rel="noreferrer" target="_blank">http://lists.ringingworld.co.<wbr>uk/listinfo/ringing-theory</a><br>
</blockquote></div><br></div>