[r-t] Peals of Grandsire Triples without singles
Robert Bennett
rbennett at woosh.co.nz
Sun May 15 02:09:25 UTC 2011
Peals of Grandsire Triples without singles
By using 5ths place bobs (Hics) as well as normal bobs, William Shipway
produced a peal of Grandsire with triple changes only (no doubles or
singles). His peal uses a composite Q set of (Bob, Hic) x 5, making a 10
course block. The other 62 courses can be joined to this with bobbed
Q-sets. Shipway cunningly used the bobbed Q-sets of Holt's 10-part to do
this.
Jasper Snowdon in “Variation and Transposition” claimed that at least
5 Hics would be required, and that therefore only 5 should be allowed in a
peal composition! It is however possible to produce peals with only 2 Hics,
using a composite Q set of (Bob, Bob, Hic) x 2, making an 6-course block to
which the other 66 courses can be joined with bobbed Q sets.
A Peal of Grandsire Triples
using 119 bobs and 2 fifths place bobs (Hics)only:
234567
-462375 3
-534762 1
Hic576234 1
-425376 1
-764532 2
-437625 3
-564237 1
-375426 2
-263547 2
-472356 2
-634572 1
-346572 4
-463572 4
-724356 2
-567432 2
-735624 3
-527346 3
-325674 5
-463725 1
-324657 3
-763524 1
-327645 3
-623574 5
-526437 5
-265437 4
-462753 5
-374562 1
-623457 2
-426735 5
-724563 5
-637452 2
-376452 4
-473265 5
-274536 5
-362457 2
-573246 2
-625473 1
-256473 4
-452367 5
-674235 2
-526374 1
-265374 4
-572643 3
-245736 3
-742653 5
-367542 1
-423756 2
-564372 2
-235764 1
-732456 5
-567243 2
-325467 1
-563274 3
-425763 1
Hic476325 1
-534276 1
-765423 2
-527634 3
-735246 3
-467523 2
-724635 3
-437256 3
-234675 5
-562734 1
-235647 3
-762435 1
-237654 3
-632475 5
-436527 5
-364527 4
-563742 5
-275463 1
-632547 2
-536724 5
-735462 5
-627543 2
-276543 4
-572364 5
-265743 3
-432576 2
-534627 5
-765234 1
-657234 4
-426357 1
-264357 4
-362745 5
-623745 4
-726534 5
-527463 5
-635742 2
-736254 5
-237465 5
-762354 3
-437562 1
-624753 2
-726345 5
-327564 5
-523476 5
-425637 5
-764325 1
-647325 4
-536247 1
-365247 4
-263754 5
-632754 4
-736425 5
-367425 4
-543267 1
-675324 2
-436275 1
-364275 4
-473652 3
-354726 3
-753642 5
-267453 1
-532746 2
-465273 2
-324765 1
-723546 5
-467352 2
-234567 1
Robert H.Bennett
1992.
Except for one Q set of 5 bobs, the peal is in two equal parts.
I doubt that an exact two-part is possible, but a palindromic two part
like Holt's 10-part peal may be possible.
A Peal of Grandsire Triples
using 99 bobs and 2 fifths place bobs only:
234567
Hic263475 -3
632475 -4
756243 -2
257364 -5
642735 -2
746523 -5
237654 -2
462537 -1
564723 -5
Hic563742 -5
275463 -1
472356 -5
374625 -5
673542 -5
346725 -3
743562 -5
547236 -5
245673 -5
732564 -2
457632 -1
654273 -5
256347 -5
352764 -5
753426 -5
267345 -2
532467 -1
435726 -5
734652 -5
637245 -5
236574 -5
742653 -2
257436 -3
642357 -1
576234 -2
765234 -4
347526 -2
543672 -5
435672 -4
574326 -3
375642 -5
673254 -5
356742 -3
753264 -5
647325 -2
346572 -5
543267 -5
435267 -4
234756 -5
732645 -5
457263 -2
254376 -5
472563 -3
634257 -2
346257 -4
243765 -5
742536 -5
547623 -5
645372 -5
236745 -1
452673 -2
734265 -2
237546 -5
742365 -3
267453 -3
532746 -2
735624 -5
637452 -5
756324 -3
357462 -5
243657 -1
352476 -3
453627 -5
764253 -1
537426 -2
645237 -1
536472 -3
245736 -1
362574 -2
563427 -5
635427 -4
436752 -5
654327 -3
276435 -2
352647 -2
653724 -5
756432 -5
637524 -3
246753 -2
532674 -2
465732 -1
654732 -4
436527 -3
534762 -5
735246 -5
547362 -3
345276 -5
453276 -4
254637 -5
652743 -5
436275 -2
234567 -5
Robert H.Bennett
1995.
The peal is an attempt to find the minimum number of bobs in this system.
I suspect however, that the minimum number of bobs required in this type
of composition with two Hics is about 95.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://bellringers.net/pipermail/ringing-theory_bellringers.net/attachments/20110515/72998e6d/attachment-0003.html>
-------------- next part --------------
A non-text attachment was scrubbed...
Name: Peals of Grandsire Triples without singles.rtf
Type: application/octet-stream
Size: 67012 bytes
Desc: not available
URL: <http://bellringers.net/pipermail/ringing-theory_bellringers.net/attachments/20110515/72998e6d/attachment.obj>
More information about the ringing-theory
mailing list