[r-t] Bobs-only Stedman Triples - 73 complete B-block peals
Andrew Johnson
andrew_johnson at uk.ibm.com
Sat Mar 26 08:29:25 GMT 2022
73 complete B-block peals
All the sets of blocks here give peals, but I have just shown some peals as an illustration.
67 round blocks
Signature: 21:4+33
2314567QS---------P--------P---------P------P---------P---P---------P-----P---------P---P--------P---------PP*1(1)
4163527QS--------P-----P---------P---P---------P-----P---------P---P-*1(1)
2173546QS-------PP--P---P-----P---P-PP-*1(1)
4215376QS----P---P-----P---P-*1(1)
https://complib.org/composition/82297 573 bobs
2314567QS---------P-------P---------P-------P---------P---P---------P-----P---------P---P-------P---------P-P*1(1)
1364527QS--------P-----P---------P---P---------P-----P---------P---P-*1(1)
2173546QS------P-P--P---P-----P---PP-P-*1(1)
1235476QS----P---P-----P---P-*1(1)
69 round blocks
Signature: 21:6+33
2314567QS---------P-----P---------P---P---------P-----P---------P---P*1(1)
1673542QS--------P--------P------P---P---------P-----P---------P---P-*1(1)
4526173QS--------P--PP---P-----P---P-P-*1(1)
4562137QS--------P--P------P-*1(1)
4531726QS--------P--P------P-*1(1)
6512374QS-----P---P-----P---P*1(1)
2314567QS---------P-----P---------P---P---------P-----P---------P---P*1(1)
1763524QS--------P--------P------P---P---------P-----P---------P---P-*1(1)
2547163QS--------P--PP---P-----P---P-P-*1(1)
2531647QS--------P--P------P-*1(1)
2574136QS--------P--P------P-*1(1)
6512374QS-----P---P-----P---P*1(1)
2314567QS---------P-----P------P------P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P------P---------P--P---------P------P*1(1)
1324657QS---------PPP--------PP----P--P*1(1)
1754623QS---------P------P--P*1(1)
6142753QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
https://complib.org/composition/89127 564 bobs
2314567QS---------P-----P------P------P---------P--P---------P------P*1(1)
7356124QS---------P--P---------P------P---------P--P---------P------P*1(1)
6173245QS--------P--PPP--------PP----P-*1(1)
6123754QS--------P--P------P-*1(1)
6154372QS--------P--P------P-*1(1)
3146527QS--------PP--------PP*1(1)
71 round blocks
Signature: 21:8+33
2314567QS---------P--------P--P-------P---------P-P---------P-------P*1(1)
6172543QS--------P--PP-P-------P-P---P-*1(1)
6521734QS---------P------P--P*1(1)
6527143QS---------P------P--P*1(1)
4653271QS---------P------P--P*1(1)
3245617QS--------P--P------P-*1(1)
6712534QS--------P--P------P-*1(1)
4235671QS--------P--P------P-*1(1)
2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
3154627QS---------PPP--------PP----P--P*1(1)
6514327QS---------P------P--P*1(1)
3724651QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
6342157QS--------P--P------P-*1(1)
6345721QS--------P--P------P-*1(1)
3647521QS--------P--P------P-*1(1)
https://complib.org/composition/89099 564 bobs
https://complib.org/composition/92760 531 bobs
https://complib.org/composition/92761 531 bobs, no more than 6 bobs in a row
These two peals have 531 bobs, 45 fewer than any magic block peal, but still considerably more than the 10-part peals.
The last peal has 102 Q-sets, but 10 must remain bobbed for the peal to be linked, so unfortunately we can't remove another 30 bobs from this peal. Perhaps the extra Q-sets make it easier to choose a selection to plain so that there are no more than 6 bobs in a row.
To be continued.
Andrew Johnson
More information about the ringing-theory
mailing list