[r-t] Bobs-only Stedman Triples - 54 complete B-block peals
Andrew Johnson
andrew_johnson at uk.ibm.com
Mon May 23 07:56:41 BST 2022
54 complete B-block peals
I have found 72 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [33 to 45] of round blocks where the sixes can be rearranged to give 55 complete B-blocks. Some of the sets of blocks which give peals are illustrated below.
35 round blocks, signature 56:7+93
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P---------P-P---------P-------P-P---P----PPP--------PP---P----P---P---PP*1(1)
2516347QS---------P--------P---------PP---------P--------P---------PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6142537QS-------P-P-------P-P*1(1)
https://complib.org/composition/92746 612 bobs
35 rounds blocks, signature 54:5+90
2314567QS---------P-----P---------P----P---------P----P---------P----P-P---------P---P---------P----P---------P----P---------P----P-------P*3(1)
3462157QS-------PP-P--P----P----P----PP*3(1)
3621547QS----P----P----P----P*1(1)
3275416QS----P----P----P----P*1(1)
3562174QS----P----P----P----P*1(1)
https://complib.org/composition/93332 621 bobs
https://complib.org/composition/86279 630 bobs, irregular 3-part
https://complib.org/composition/93333 645 bobs
These are blocks from a 3-part group so give irregular, but not exact, 3-part peals
39 round blocks, signature 54:9+105
2314567QS---------P---P----P--P----PP--------PPP----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
2574361QS---------P---P----P--P----PP--------PPP----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
6514327QS---------P---P----P--P------P----P--P---------P------P------P------PP--P---------P--P--P-P*1(1)
4271635QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4617235QS--------P-------P---------P-P---------P-------P---------P-P-*1(1)
4653712QS--------P--PP--P----P--P----PP--------PPP----P--P-*1(1)
4153672QS---------P--P--P--P--P------P------PP--P*1(1)
4163275QS-------P-P-------P-P*1(1)
4723615QS-------P-P-------P-P*1(1)
https://complib.org/composition/81643 603 bobs
These are curious blocks - some are repeated, some are not.
45 round blocks, signature 54:15+90
2314567QS---------P-----P---------P---P------P--------P---------P---P*1(1)
7613245QS---------P-----P---------P---P------P--------P---------P---P*1(1)
5416732QS---------P-----P---------P---P------P--------P---------P---P*1(1)
1234756QS--------P-----P---------P---P---------P-----P--PP-*1(1)
1763524QS--------P-----P---------P---P---------P-----P--PP-*1(1)
1546273QS--------P-----P---------P---P---------P-----P--PP-*1(1)
4172536QS---------P-P---P-----P---PP--P*1(1)
3157264QS---------P-P---P-----P---PP--P*1(1)
6125743QS---------P-P---P-----P---PP--P*1(1)
4527136QS--------P--P------P-*1(1)
3275164QS--------P--P------P-*1(1)
6752143QS--------P--P------P-*1(1)
1465327QS----P---P-----P---P-*1(1)
1342675QS----P---P-----P---P-*1(1)
1527463QS----P---P-----P---P-*1(1)
https://complib.org/composition/86257 663 bobs, 3-part
Not an exact 3-part, but reasonably regular
To be continued.
Andrew Johnson
Unless otherwise stated above:
IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU
More information about the ringing-theory
mailing list