[r-t] Composing challenge - 1788 Plain Bob Maximus
Alan Reading
alan.reading at googlemail.com
Mon Nov 15 20:37:00 UTC 2010
Here's another effort.
Has quite a few runs and cyclic type music but does deploy a sledgehammer
call to get the treble into the hunt, and simultaneously put the other bells
into a backstroke cyclic course. Only 2 types of call though.
1788 Plain Bob Maximus
(TE0987654321)
T08E69472513
T8604E291735
T648201E3957
T42618305E79
T2143658709E
1T234567890E x
1T24638507E9 -
1T268403E597 -
1T2806E49375 -
1T20E8967453 -
12ET90785634
1E927T503846
197E523T4068
17593E426T80
1537496E820T
134567890ET2
13468507T92E -
134806T527E9 -
1340T826E597 -
134T20E89675 -
1423ET907856
12E4937T5068
1E9274536T80
197E5264830T
17596E8204T3
1567890ET234
156807T93E42 -
1560T837492E -
156T304827E9 -
15634T20E897 -
164523ET9078
1426E5937T80
12E49675830T
1E92748605T3
197E8204T635
17890ET23456
1780T93E5264 -
178T30596E42 -
18375T60492E
1358674T20E9
15634827ET90
164523E8970T
1426E59308T7
12E49605T378
1E9204T67583
190ET2748635
190T7E823456 -
19078T3E5264 -
1089375T6E42
183059674T2E
1358604927ET
15634820E9T7
164523E8T079
1426E5T37890
12E4T6759308
1ET274960583
1ET792048635 -
1ET907823456 -
1T0E89375264
108T3E596742
18305T6E4927
1358604T2E79
135648207T9E -
1354267890ET -
13527496E8T0 -
157392E4T608
1795E3T20486
19E7T5038264
1ET907856342
1T0E89674523
108T6E492735
18604T2E3957
1648203T5E79
142638507T9E
1234567890ET
x = 34567890ET
- = 14
Cheers,
Alan
On 15 November 2010 19:44, Philip Saddleton <pabs at cantab.net> wrote:
>
> Clearly the treble needs to be affected to get the length. I see three
> possibilities:
>
> - variable hunt, with fixed length leads (as you have)
> - treble remains in the hunt, but is affected by calls, thus altering the
> length of the lead (I assume this is ruled out, as a lead of little bob
> could be thought of as the treble making the bob)
> - variable hunt, changing the hunt bell within a lead, without a call
> otherwise, along the lines of Alan Burbidge's Grandsire Triples.
>
> I have gone for the third of these, but restricted myself to whole
> half-leads, i.e. 12 made at the half-lead, after which a new lead starts. It
> is a bit awkward keeping the back bells together, as there is only one place
> in the course for such a call that keeps 890ET fixed, and this repeats the
> middle of the course. Here's an attempt that aims to keep calls to a
> minimum:
>
> -12357496E8T0
> 137295E4T608
> 1793E2T50486
> 19E7T3028564
> 1ET907836245
> 1T0E89674352
> 108T6E495723
> 18604T5E2937
> -1864502T3E79
> 165824307T9E
> 1526387490ET
> ------------
> -15237698E4T0
> 127593E6T804
> x48603T5E2917
> x79E1T2058346
> 7ET901824563
> 7T0E89416235
> 708T4E693152
> 78406T3E5921
> x19E2T5038674
> 1ET902857346
> 1T0E89724563
> 108T7E496235
> 18704T6E3952
> 1748603T5E29
> -174638502T9E
> 1437562890ET
> ------------
> 13542796E8T0
> -135294E7T608
> 1593E2T40786
> 19E5T3028467
> 1ET905836274
> 1T0E89657342
> 108T6E794523
> 18607T4E2935
> x59E3T2048716
> 5ET903821467
> 5T0E89136274
> 508T1E697342
> 58106T7E4923
> x39E2T4078651
> 3ET902845716
> 3T0E89521467
> 308T5E196274
> 38501T6E7942
> x29E4T7068135
> 2ET904873651
> 2T0E89345716
> 208T3E591467
> 28305T1E6974
> 2358106T7E49
> 251368704T9E
> 2165734890ET
> ------------
> -21674593E8T0
> 264197E5T308
> 2496E1T70583
> 29E4T6018735
> 2ET904863157
> 2T0E89345671
> 208T3E597416
> 28305T7E1964
> x49E6T1078523
> 4ET906812735
> 4T0E89263157
> 408T2E395671
> 48203T5E7916
> x69E1T7058342
> 6ET901874523
> 6T0E89412735
> 608T4E293157
> 68402T3E5971
> x19E7T5038264
> 1ET907856342
> 1T0E89674523
> 108T6E492735
> 18604T2E3957
> 1648203T5E79
> 142638507T9E
> 1234567890ET
> ------------
> 1788 rows ending in 1234567890ET
> Touch is true
>
> Philip
>
> Philip Earis said on 14/11/2010 17:04:
>
> Here's a composing challenge that I've been playing around with a bit this
>> afternoon. A prize is on offer for the best solution...
>>
>> For a historic commemorative reason, I need a touch of 1788 plain bob
>> maximus. I would like this to be 'pure' (ie no splicing with little bob!)
>> and relatively simple, with a maximum of two types of call if possible.
>>
>> Now 1788 changes equates to 74.5 leads. A logical way to start would be
>> with the tenor in the hunt, with a call to swap it with the treble after 5.5
>> leads.
>>
>> I did this with a 3T call, bringing up:
>> 1T243658709E
>>
>> then I used just 4ths place bobs:
>>
>> 1T2E09876543 (5b)
>> 1ET209876543 (10p b)
>> 1354267890ET (8p b 8p)
>> 1524367890ET (p 8b)
>> 1342567890ET (p 7b p)
>> 1423567890ET (8b p)
>> 1234567890ET (8b p)
>>
>> Whilst this works, plain bob's a-group nature causes some serious
>> constraints.
>> I wonder if there's a better, innovative approach. Ideas very welcome.
>>
>>
>>
> _______________________________________________
> ringing-theory mailing list
> ringing-theory at bellringers.net
> http://bellringers.net/mailman/listinfo/ringing-theory_bellringers.net
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://bellringers.net/pipermail/ringing-theory/attachments/20101115/4f17ee2a/attachment-0004.html>
More information about the ringing-theory
mailing list