[r-t] Tritonian S. Max
Jack Gunning
jack.gunning at mac.com
Sun Aug 21 20:04:38 UTC 2016
Here is a new London over method with a regular half lead:
Tritonian S. Maximus
&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x0.E, le 2 [d]
To get the regular half lead I made coursing pairs work together in 1-2, 3-4, 5-6, 7-8, and 9-0 under the treble. This means that:
- the method is decent in traditional cos, and
- in tittums c/os you get runs around the quarter/three-quarter lead as well as tittums music around the lead end and half lead.
Here are a couple of comps:
5040 Tritonian Surprise Maximus, No.1
234567890ET N M W O H
342567890ET 2
23456789T0E T before: 8ths, 6ths, 4ths; 2 In: 4ths, 6ths, 8ths
436527890ET - H
654327890ET - -
67452389T0E - -
234567890ET s s H
-=14
s=1234
H=10
5040 Tritonian Surprise Maximus, No.2
234567890ET N M W O H
342567890ET 2
23456789T0E T before: 8ths, 6ths, 4ths; 2 In: 4ths, 6ths, 8ths
65432789T0E - - -
654327890ET H
67452389T0E - -
234567890ET s s H
5040 Tritonian Surprise Maximus, No.3
234567890ET N M W O H
342567890ET 2
23456789T0E T before: 8ths, 6ths, 4ths; 2 In: 4ths, 6ths, 8ths
65432789T0E - - -
674523890ET - H
67452389T0E -
234567890ET s s H
Each has a large amount of settling time before the mega tittums block (if the method was more familiar, this wouldn’t be as desirable) and then little bell stuff afterwards.
I used SMC32 to generate the comps by substituting a dummy block for the mega tittums block and looking for a shorter length (3312) using the code:
musthave 1628304T5E79 186T4E203957 O xH
I added the missing rows as musical exclusions - Mark gave me this idea
So the SMC output for No.1 was:
3312 Tritonian Surprise Maximus, No.1
234567890ET N M W H O H
342567890ET 2
23456789T0E - -
436527890ET - x
654327890ET - -
67452389T0E - -
234567890ET s s x
Score: 13145
Musthave blocks 1
1 reverse rounds
11 Plain course
2 Two homes
52 78s
9 56s
18 53246 lbco
3 35642 lbco
10 53462 lbco
11 357642 lbco
42 pref lbcos
48 LB6
82 LB5+
96 LB4+
1 Megablock lead end
If you’d like to, feel free to ring it, but I’d rather you didn’t change the name without asking.
I intend to use the dummy block technique to come up with some Bristol comps on a similar plan.
Jack
PS here is the proof code:
No. 1
12 Bells
Peal = 10p, q,
10p, q,
8p, s, 6p, r, 6p, q, 9p, q, 6p, r, 6p, s,
3p, q, 2p, t,
6p, q, 3p, q,
2p, q, 5p, q, 2p,
2p, v, v, 2p, t
p=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +2, " @"
q=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +4, "4 @"
r=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +6, "6 @"
s=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +8, "8 @"
t=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +0, "0 @"
u=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +T, "T @"
v=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +1234, "s @“
No.2
12 Bells
Peal = 10p, q,
10p, q,
8p, s, 6p, r, 6p, q, 9p, q, 6p, r, 6p, s,
3p, q, 2p, q, 3p, q,
6p, t,
2p, q, 5p, q, 2p,
2p, v, v, 2p, t
p=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +2, " @"
q=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +4, "4 @"
r=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +6, "6 @"
s=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +8, "8 @"
t=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +0, "0 @"
u=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +T, "T @"
v=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +1234, "s @“
No.3
12 Bells
Peal = 10p, q,
10p, q,
8p, s, 6p, r, 6p, q, 9p, q, 6p, r, 6p, s,
3p, q, 2p, q, 3p, q,
2p, q, 3p, t, 8p, q,
4p, v, v, 2p, t
p=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +2, " @"
q=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +4, "4 @"
r=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +6, "6 @"
s=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +8, "8 @"
t=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +0, "0 @"
u=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +T, "T @"
v=&3x3.4x2x3.4x2.5.2x2.7.4x6.9.8x.0.e, +1234, "s @"
More information about the ringing-theory
mailing list