[r-t] Bobs-only Stedman Triples - 67 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Fri Apr 22 08:10:10 BST 2022


67 complete B-block peals

I have found over 250 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [61 to 71] of round blocks where the sixes can be rearranged to give 67 complete B-blocks. Some of the sets of blocks are given below together with some peals.

63 round blocks, signature 30:9+51

2314567QS---------P--------P--------P-P---------P------PPP---------P--------P---------P-P------P-P---------PP*1(1)
5134267QS---------P-------P---------P-P------PP---------P-P*1(1)
2617534QS--------PP------PP--------PPPP*1(1)
5741236QS---------P------P--P*1(1)
2417563QS---------P------P--P*1(1)
5147263QS---------P------P--P*1(1)
2643571QS---------P------P--P*1(1)
5463271QS---------P------P--P*1(1)
5364217QS------P-P-------P-P-*1(1)
https://complib.org/composition/86620 561 bobs

67 round blocks, signature 28:11+45

2314567QS---------P--------P--P-------P---------P--------PP---------P------P-PP*1(1)
4516372QS--------P--P---PP--------PP-P-*1(1)
4561327QS---------P------P--P*1(1)
2561374QS---------P------P--P*1(1)
7361524QS---------P------P--P*1(1)
4361572QS---------P------P--P*1(1)
7561342QS---------P------P--P*1(1)
2516347QS--------P--P------P-*1(1)
4316527QS--------P--P------P-*1(1)
7516324QS--------P--P------P-*1(1)
7316542QS--------P--P------P-*1(1)
https://complib.org/composition/96116 549 bobs

To be continued.

Andrew Johnson




More information about the ringing-theory mailing list