[r-t] Bobs-only Stedman Triples - 64 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Sat Apr 30 07:56:16 BST 2022


64 complete B-block peals

I have found 46 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [51 to 69] of round blocks where the sixes can be rearranged to give 64 complete B-blocks. Here are some of the blocks and some peals.

51 round blocks, signature 38:5+69

2314567QS---------P--------P---------PP------P-P--P-----P----P-P---------P-------P---------P-P-------P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P---------P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
1352764QS-------P-P-------P-P*1(1)
1543726QS------P----P----P-P-*1(1)
5724361QS----P-PP-P*1(1)
https://complib.org/composition/77951 588 bobs

51 round blocks, signature 38:5+63

2314567QS---------P-------P---------P-------P---------P----P---------P---P---------P----P---------P-----P----P-P---------P-------P---------P-P-------P---P---------P----P---------PP--P---------P-P---------P-------P---------PP---------P----P-------P---------P-P*1(1)
7346152QS-------P----P---P----P-----P----P---P----PP-P-------P-P--P----P---P-P-*1(1)
3516742QS---------P------P--P*1(1)
5713246QS-------P-P-------P-P*1(1)
5167234QS------P----P----P-P-*1(1)

61 round blocks, signature 31:8+57

2314567QS---------P------PP--------PPP---------PP-------PP---------P-------PP--------P-P---------P-------P--P------PPP---------PP------P-PP*1(1)
5134267QS---------P-------P---------P-P-------P---------P-P------PP-P*1(1)
2471536QS---------P------P--P*1(1)
5741236QS---------P------P--P*1(1)
5376214QS--------P-------P-PP*1(1)
2514637QS--------P--P------P-*1(1)
5261347QS--------PP-P-------P*1(1)
5364217QS------P-P-------P-P-*1(1)
https://complib.org/composition/96536 561 bobs

63 round blocks, signature 28:7+54

2314567QS---------P-------P------P----P----PP---------PPP----P-P-------P---P--------P---------PP---------PP------P----P----P--P-P*1(1)
1264573QS--------PP------P-P--P----P----P------P-------P--P*1(1)
5174236QS--------P-------P----P-------P*1(1)
1326547QS------P-------P--P------P-P--P*1(1)
5624173QS---------P------P--P*1(1)
5743126QS--------P-------P-PP*1(1)
1723546QS----P-PP-P*1(1)
https://complib.org/composition/91460 573 bobs

To be continued.

Andrew Johnson

Unless otherwise stated above:

IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU



More information about the ringing-theory mailing list