[r-t] Bobs-only Stedman Triples - 42 complete B-block peals
Andrew Johnson
andrew_johnson at uk.ibm.com
Fri Jun 3 09:29:03 BST 2022
I have found 2 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [31, 35] of round blocks where the sixes can be rearranged to give 42 complete B-blocks. Here are the sets of blocks together with some peals. Both sets of blocks are based on a group of order 3.
31 round blocks, signature 57:4+120
2314567QS---------P----P---P---P---------P--P-P----P---PPP-P----P----P---P---------P----P----P--P-------P----P----P-----P----PP--------PP---P----P----P----PP----P----P-----PP----P*3(1)
2613547QS---------P------P--P*1(1)
7243156QS---------P------P--P*1(1)
6753412QS---------P------P--P*1(1)
https://complib.org/composition/91897 612 bobs, exact 3-part
https://complib.org/composition/97816 621 bobs, exact 3-part
https://complib.org/composition/91986 630 bobs, exact 3-part
https://complib.org/composition/91898 657 bobs, exact 3-part
These exact 3-part peals range from 612 to 659 bobs, compared to 636 to 690 for the 48 complete B-block exact 3-parts shown earlier, or 603 to 639 for the exact 3-part peals published in 2017.
35 round blocks, signature 54:5+111
2314567QS---------P-----PPP--------PP-------P-----P---------P----P-------PP--------PPP---P--------P---------PP---------P---PP--------PP---P*3(1)
5126347QS-------PP--P-----P----P---PPP-*3(1)
1723546QS--------PP--------PP*1(1)
5163724QS--------PP--------PP*1(1)
7562143QS--------PP--------PP*1(1)
https://complib.org/composition/85926 570 bobs, irregular 3-part
https://complib.org/composition/77482 576 bobs, 3-part
https://complib.org/composition/77446 576 bobs, 3-part
To be continued.
Andrew Johnson
--
Unless otherwise stated above:
IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU
More information about the ringing-theory
mailing list