[r-t] Bobs-only Stedman Triples - 36 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Wed Jun 8 06:48:40 BST 2022


36 complete B-block peals

I have found at least 9 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [25] of round blocks where the sixes can be rearranged to give 36 complete B-blocks. Here are the sets of blocks together with some peals. Most of the peals have already been published as the exact 3-part peals from 2017, see The Ringing World Issue 5565 p1264 22 December 2017.

There sets of blocks are based on a group of order 3. The blocks have not been normalised by rotation to better show the similarities.

36 complete B-blocks, signature 60:1+165

4637251QS----P-----P---------PP--------P-P----PP----PPP--------P-----P---------P-P----PP--PP----PP----PP--PP--------PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-PPP--PP--PP----PP--PP--P----*3(1)
https://complib.org/composition/37420 Exact three-part Op. 1, 603 bobs
https://complib.org/composition/37428 Exact three-part Op. 496, 603 bobs

4637251QS----P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-P----PP--PPPPP--------P-----P---------P-P----PP--PP----PP--------PP--PP----PP--PP--P----*3(1)
https://complib.org/composition/37421 Exact three-part Op. 10, 603 bobs
https://complib.org/composition/37427 Exact three-part Op. 487, 603 bobs

4637251QS----P-----P---------P-P----PP----PPP--------P-----P---------P-PPP--PP--------PP----PP--PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
https://complib.org/composition/37422 Exact three-part Op. 55, 603 bobs

4637251QS----P-----P---------P-PPP--PP--------PP--PP--P--------P-----P---------PP--------P-PPP--PP----PPP--------P-----P---------P-PPP--PP--------PP----PP--PP--------PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
https://complib.org/composition/37425 Exact three-part Op. 82, 603 bobs
https://complib.org/composition/37430 Exact three-part Op. 568, 603 bobs

4637251QS----P-----P---------P-P----PP--PP----PP--------PP--PPPPP--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
https://complib.org/composition/36006 Exact three-part Op. 109, 603 bobs
https://complib.org/composition/36034 Exact three-part Op. 109 Queen's rotation, 603 bobs
https://complib.org/composition/77814 Exact three-part Op. 284, 639 bobs
https://complib.org/composition/37431 Exact three-part Op. 595, 603 bobs
https://complib.org/composition/37432 Exact three-part Op. 622, 603 bobs

4637251QS----P-----P---------P-PPP--PP--------PP--PP--P--------P-----P---------PP--------P-PPP--PP--PP----PP--------PP--PPPPP--------P-----P---------P-P----PP--------PP--PPPP--PP--PP--P--------P-----PP---P----*3(1)
https://complib.org/composition/37426 Exact three-part Op. 136, 603 bobs
https://complib.org/composition/37429 Exact three-part Op. 541, 603 bobs

These are some irregular blocks, but based on the blocks above.

36 complete B-blocks, signature 60:1+159

3467251QS-------PP----P-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------PPP----PP----P-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP--------PP----P-P--------PP---------P-----P--------P--PP--PP----PP--PP----P-P---------P-----P--------P--PP--PP----PP--PP--PPP-P---------P-----P--------P---PP-----P--------P--PP--PP--PPPP--PP--------PP--PP----PP----PP--PP----P-P---------P-----P--------P--PP--PP-*1(1)
https://complib.org/composition/77588 609 bobs, very irregular 3-part

4637251QS----P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--PP--P--------P-----PP---P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------P-PPP--PP--PP----PP--PP--P--------P-----P---------P-PPP--PP--PP----PP--PP--P--------P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--------PP--PP--P--------P-----P---------P-P----PP--PP----PP----PP--PP--PP----PP--PP--P--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------P-PPP--PP----PPP----*1(1)
https://complib.org/composition/77964 645 bobs, irregular

36 complete B-blocks, signature 60:1+171

4637251QS----P-----PP---P--------P-----PP---P--------P-----P---------PP--------P-PPP--PP--PPPPP--------P-----P---------P-P----PP--PP----PP--PP--P--------P-----P---------PP--------P-P----PP--PPPPP--------P-----P---------PP--------P-P----PP--PPPPP--------P-----P---------PP--------P-P----PP--PP----PP--PPPP--PP--------PP--PP----PP----PP------PPPP--PP--PP--P--------P-----PP---P--------P-----P---------PP--------P-P----PP--PP----PP--PPPP------PP----PP--PPPP--PP--PPPP--PP---PP---PP--------PP---PP---PP--PP----PP--------PP--PPPPP--------P-----PP---P--------P-----PP---P--------P-----P---------P-P----PP----PPP----*1(1)
https://complib.org/composition/97879 597 bobs

To be continued.

Andrew Johnson
--
















Unless otherwise stated above:

IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU



More information about the ringing-theory mailing list