[r-t] Bobs-only Stedman Triples - 24 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Thu Jun 9 07:56:24 BST 2022


24 complete B-block peals

I have found 361 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [23 to 39] of round blocks where the sixes can be rearranged to give 24 complete B-blocks. Here are examples of two sets of blocks which give peals.

23 round blocks, signature 66:5+171

c 5040!23 
2314567QS---------P--------P---P-------PP--------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P---P-------PPP---P----PP--------P--P--------PP---PP*1(1)
6451327QS--------PP---PP--------PP---PP*1(1)
2314675QS-----P--P------P--P-*1(1)
2341765QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
171 23
https://complib.org/composition/76542 597 bobs

27 round blocks, signature 56:9+165

2314567QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
7345126QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
6351472QS---------P--------P---P-------PP--------PPP---P----PP--------PPP--P----PP--------P--P--------PP---PP---------PPPPP--------PP---PP--------PP-PP------P----PP--------PP---PP*1(1)
6451327QS--------PP---PP--------PP---PP*1(1)
2514376QS--------PP---PP--------PP---PP*1(1)
7145362QS--------PP---PP--------PP---PP*1(1)
2314675QS-----P--P------P--P-*1(1)
2341765QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
https://complib.org/composition/60827 606 bobs, three-part peal
https://complib.org/composition/37975 606 bobs, three-part peal
https://complib.org/composition/37408 606 bobs, three-part peal
https://complib.org/composition/38015 609 bobs, three-part peal
https://complib.org/composition/38016 609 bobs, three-part peal

To be continued.

Andrew Johnson
--










Unless otherwise stated above:

IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU



More information about the ringing-theory mailing list