[r-t] Bobs-only Stedman Triples - 77 complete B-blocks

Andrew Johnson andrew_johnson at uk.ibm.com
Thu Mar 10 20:18:10 GMT 2022


77 complete B-block peals

I have found 3 different ways of rearranging the contents of a whole number of B-blocks to give an odd number of round blocks, subject to the 77 complete B-block restriction.

2314567QS---------P--------P---------P-P---------P--------P---------PP---------P--------P--------P---------PP*1(1)
2173465QS-------PP----PP--------PP--PP-*1(1)
and
2314567QS---------P--------P---------P-P---------P--------P---------PP---------P--------P--------P---------PP*1(1)
3517246QS--------PP------PP--------PPPP*1(1)
Signature: 13:2+21
13 B-blocks into two blocks using 21 plains, so giving 73 round blocks in total.
However, I have not found a peal using either of these sets of blocks

2314567QS---------P--------P---------P-------P--P--------P---------PP*1(1)
2461573QS---------P------PPP--------PPP*1(1)
2416537QS---------P------P--P*1(1)
2743516QS---------P------P--P*1(1)
Signature: 13:4+21
13 B-blocks into four blocks using 21 plains, giving 75 round blocks in total.

https://complib.org/composition/85387 579 bobs
https://complib.org/composition/93113 576 bobs

TBC

Andrew Johnson





More information about the ringing-theory mailing list