[r-t] Bobs-only Stedman Triples - 76 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Mon Mar 14 06:52:54 GMT 2022


76 complete B-block peals

I have found 5 different ways of rearranging the contents of a whole number of B-blocks to give an odd number of round blocks, where the peal can have 76 complete B-blocks extracted from the sixes.

71 round blocks (a)

2314567QS---------P--------P---P--PP--P---------P--P-----PP---------P-P---------P-------P*1(1)
6352741QS---------P--P---------P--PP--P*1(1)
1547362QS--------P--P---PP--------PP-P-*1(1)
4371526QS---------P------P--P*1(1)
3265714QS--------P--P------P-*1(1)
Signature: 18:5+33
This arranges the contents of 18 B-blocks into 5 round blocks using 33 plains, giving 71 round blocks in total.
https://complib/composition/84985 597 bobs
https://complib/composition/85836 567 bobs

71 round blocks (b)

2314567QS---------P--------P-P--------P---------PP-------PP---------P-P-------P---------PPP---------P------PP--------PPP--------P---------P-P-------P*1(1)
Signature: 14:1+24
This arranges the contents of 14 B-blocks into 1 round blocks using 24 plains, giving 71 round blocks in total.
This set of blocks has an upper limit of 711 bobs for a peal, and such a peal can be found.
71 blocks to be linked by 35 Q-sets, adding another 105 plains, so giving 129 plains in total.
https://complib/composition/93425 564 bobs
https://complib/composition/93428 711 bobs
https://complib/composition/93429 711 bobs, only 8 omits after a quick six

This core block can be examined. Note how bells 2 and 3 remain together in the front 5 places.
https://complib.org/composition/93430 840 changes 116 bobs

73 round blocks (a)

2314567QS---------P---P------P--P--P--P*1(1)
2315476QS---------PP---------P--P--P--P*1(1)
3217645QS---------PP---------P--P--P--P*1(1)
3216754QS---------PP---------P--P--P--P*1(1)
6514327QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
3647521QS--------P--P------P-*1(1)
Signature: 18:7+33
This arranges the contents of 18 B-blocks into 7 round blocks using 33 plains, giving 73 round blocks in total.
https://complib/composition/93427 594 bobs

75 round blocks (a)

2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
6254317QS---------P------P--P*1(1)
6714352QS---------P------P--P*1(1)
3645712QS--------P--P------P-*1(1)
2743165QS-------PP--------PP-*1(1)
Signature: 14:5+21
This arranges the contents of 14 B-blocks into 5 round blocks using 21 plains, giving 75 round blocks in total.
https://complib/composition/82483 591 bobs
Only 13 runs with an odd number of bobs: 1 5-bob set, 2 3-bob sets, 10 1-bob sets. Last third of peal is all in pairs (runs of 2 and 6, with one 4).

75 round blocks (b)

2314567QS---------P---P------P--------P---------PP---------P--------P*1(1)
6514327QS---------P------P--P*1(1)
6274351QS---------P------P--P*1(1)
3647521QS--------P--P------P-*1(1)
1274365QS--------PP--------PP*1(1)
Signature: 14:5+21
This arranges the contents of 14 B-blocks into 5 round blocks using 21 plains, giving 75 round blocks in total.
https://complib/composition/92787 558 bobs

To be continued.

Andrew Johnson




More information about the ringing-theory mailing list