[r-t] Bobs-only Stedman Triples - 61 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Sat May 7 10:42:42 BST 2022


61 complete B-block peals

I have found 167 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [43 to 57] of round blocks where the sixes can be rearranged to give 61 complete B-blocks. Here are 4 of the sets of blocks together with some peals. 

43 round blocks, signature 45:4+72

2314567QS---------P---------PP---------P-----P---------P----P---------P---P---------P----P-----PP---------P--------P---------PP---------P--------P---P-----P---------P-----P---------P--------P---------PP---------P--------P---P---------P----P---------P-----P---------P----P---P--------P---------PP---------P--------P---------PP-----P---P---------P---P*1(1)
3462157QS-------PPP---P----P-----P----P---P----P-----P----P---P----P-----P--PP-*1(1)
4715236QS-----P--P------P--P-*1(1)
1537264QS-----P--P------P--P-*1(1)

45 round blocks, signature 43:4+69

5040!45 
2314567QS---------P--------P---------PP---------P--------P---P-----P---------P-----P---------P--------P---------PP---------P--------P---P---------P----P---------P-----P---------P----P---P--------P---------PP---------P--------P---------PP-----P---P---------P----P---------P-----P---------P----P---------P---P---------P----P-----PP*1(1)
7642153QS-------PPP---P----P-----P----P---P----P-----P----P---P----P-----P--PP-*1(1)
4563217QS-----P--P------P--P-*1(1)
6315274QS-----P--P------P--P-*1(1)
https://complib.org/composition/77906 621 bobs

45 round blocks, signature 43:4+69

2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P---------P-P---------P-------P------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP*1(1)
2456731QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
3546217QS--------PP--------PP*1(1)
2456317QS-------P-P-------P-P*1(1)
https://complib.org/composition/78110 585 bobs, 8 plains in a row

49 round blocks, signature 43:8+93

2314567QS---------P-----P---------P-----P---------P----P---------P---P---------P----P---------P-----P----PP------P-P--P----P--P-P-P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P--P----P--P-P------PP---P---------PP---------P--------P*1(1)
1742365QS-------PP--P-----P----P---P----P-----P----P---P----P-----P----P---PPP-*1(1)
1423675QS------P-P--P----P--P-P------PP*1(1)
1675432QS------P-P--P----P--P-P------PP*1(1)
4215637QS----P-PP-P*1(1)
4317625QS----P-PP-P*1(1)
1742653QS----P-PP-P*1(1)
1543672QS----P-PP-P*1(1)
https://complib.org/composition/85496 576 bobs, 8 plains in a row

To be continued.

Andrew Johnson

Unless otherwise stated above:

IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU



More information about the ringing-theory mailing list