[r-t] Bobs-only Stedman Triples - 60 complete B-blocks
Andrew Johnson
andrew_johnson at uk.ibm.com
Mon May 9 07:59:09 BST 2022
60 complete B-block peals
I have found 3 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [47 to 59] of round blocks where the sixes can be rearranged to give 60 complete B-blocks. Here are the sets of blocks together with a peal.
47 round blocks, signature 46:9+81
2314567QS---------P--------P---------PP------P-P--P-----P---------P----P---------P---P----P------P--P----P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P-------P------P--P-P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
4731625QS---------P------P--P*1(1)
6371425QS---------P------P--P*1(1)
6413527QS--------P--P------P-*1(1)
4615327QS--------P--P------P-*1(1)
6412735QS--------P--P------P-*1(1)
4617235QS--------P--P------P-*1(1)
5724361QS----P-PP-P*1(1)
Gives peals, but similar to blocks below
47 round blocks, signature 46:9+81
2314567QS---------P--------P---------PP------P-P--P-----P---------P----P---------P---P-P--P------P-------P----P---------P-----P---------P----P---------P---P---------P----P-------P---------P-P---------P-------P---------P-------P----P--P------P----P----P---------P---P--P-P------PP*1(1)
7532164QS------P-P--P----P---P----P-----P----P---P----P--PPP----PP-P-*1(1)
4351627QS---------P------P--P*1(1)
6531427QS---------P------P--P*1(1)
4271635QS---------P------P--P*1(1)
6721435QS---------P------P--P*1(1)
4613725QS--------P--P------P-*1(1)
6417325QS--------P--P------P-*1(1)
5724361QS----P-PP-P*1(1)
https://complib.org/composition/77124 582 bobs
59 round blocks, signature 43:18+75
2314567QS------P-----P--P-----P------P--P---PP--P*1(1)
1435672QS--------P--P------PP------P--P*1(1)
1653472QS--------P--P------PP------P--P*1(1)
2374165QS--------P--P--P---------P--PP-*1(1)
4567312QS------P-----P--P------P---P--P*1(1)
2463517QS------P--P-----P------P--P---P*1(1)
5631247QS---------P------P--P*1(1)
2147365QS---------P------P--P*1(1)
3672154QS---------P------P--P*1(1)
5427163QS---------P------P--P*1(1)
3274561QS---------P------P--P*1(1)
2541367QS--------P--P------P-*1(1)
5213647QS--------P--P------P-*1(1)
5271436QS--------P--P------P-*1(1)
3127654QS--------P--P------P-*1(1)
3547261QS--------P--P------P-*1(1)
5276341QS--------P--P------P-*1(1)
6724531QS--------P--P------P-*1(1)
No peals
To be continued
Andrew Johnson
Unless otherwise stated above:
IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU
More information about the ringing-theory
mailing list