[r-t] Bobs-only Stedman Triples - 50 complete B-block peals

Andrew Johnson andrew_johnson at uk.ibm.com
Mon May 30 14:37:50 BST 2022


50 complete B-block peals

I have found 23 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [27 to 35] of round blocks where the sixes can be rearranged to give 50 complete B-blocks. Here is a set of blocks which gives peals.

31 round blocks, signature 60:7+105

2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P--------P---------PP---------P--------P---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP---P---------PP---------P--------P---------PP---------P----P--------P---------PP---PP*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P------PP--------PP-P-P---------P-------P-P---P----PPP--------PP---P----P---P---PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6512743QS-------P---P-----PP-*1(1)
6142537QS-------P-P-------P-P*1(1)
https://complib.org/composition/92712 621 bobs

To be continued.

Andrew Johnson
--











Unless otherwise stated above:

IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU



More information about the ringing-theory mailing list