[r-t] Bobs-only Stedman Triples - 49 complete B-block peals
Andrew Johnson
andrew_johnson at uk.ibm.com
Tue May 31 06:57:34 BST 2022
49 complete B-block peals
I have found 13 sets of round B-blocks which together with some B-blocks exactly cover the extent in an odd number [31 to 35] of round blocks where the sixes can be rearranged to give 49 complete B-blocks. Here is a set of blocks which gives peals.
33 round blocks, signature 60:9+105
2314567QS---------P--------P---------PP---------P--------P----P----P---------P---P---------P----P---------P-----P---------P----P---------P---P-P-P---------P-------P-------P--------P---------PP---PP*1(1)
6725134QS---------P-----P---------P-----P---------P----P---------P---P---------P----P-----PP-P-P---------P-------P------P---------PP---------P--------P*1(1)
6513472QS---------P--------P----PP--P-----P--P-P---------P-------P------PP--------PP-P-P---------P-------P-P---P----P-----P----P---P---PP*1(1)
6531427QS---------P--------PP-----P----P---PPP---PP*1(1)
5412637QS--------PP--------PP*1(1)
3546217QS--------PP--------PP*1(1)
6512743QS-------P---P-----PP-*1(1)
6142537QS-------P-P-------P-P*1(1)
2456317QS-------P-P-------P-P*1(1)
https://complib.org/composition/78017 603 bobs
To be continued.
Andrew Johnson
--
Unless otherwise stated above:
IBM United Kingdom Limited
Registered in England and Wales with number 741598
Registered office: PO Box 41, North Harbour, Portsmouth, Hants. PO6 3AU
More information about the ringing-theory
mailing list