[r-t] multi-peal extent of major

Alan Andrews alan.andrews at breathe.com
Mon Dec 7 22:06:40 UTC 2009


Frank Blagrove composed a set that did this although, from memory,  
there would have been more repeated rows.  I used to have hard copies  
but they are tucked away now in a box somewhere.  No doubt they are  
online somewhere...

Cheers,
Alan



On 7 Dec 2009, at 21:38, Philip Saddleton wrote:

> I recall an article in the RW a few years ago discussing a set of  
> eight peals of PB Major which between them contained all the rows,  
> with only the plain course repeated. I can't remember whether these  
> had been rung, or if it was merely a theoretical exercise.
>
> There are certainly enough ways to get in and out of rounds without  
> repetition. Here's a plan:
>
> Consider pairs of changes which, combined, are equivalent to place  
> notation 'x'. There are seven of these, i.e. place notations
>
> 1234 5678
> 1256 3478
> 1278 3456
> 12 345678
> 34 125678
> 56 123478
> 78 123456
>
> Given a right-place plain method, take any one of these pairs, and  
> find the lead containing the two rows given by rounds transposed by  
> these PNs, e.g.
>
> 12435687
> 12345678 1256
> 21346578 3478
>
> This gives a way of smuggling rounds into a different lead in each  
> case, providing it is not a second's place or group M method (take  
> Double Norwich, for instance). Along with the lead starting from  
> rounds this gives eight separate leads. Then find a way of  
> partitioning the extent into mutually true blocks each containing  
> one of these leads. Eight 5040s, seven of which have an extra row  
> inserted so that you can start and finish with rounds.
>
> -- 
> Regards
> Philip
>
> Frederick Karl Kepner DuPuy said  on 07/12/2009 19:49:
>> I'm probably not the first one to think about all this, though. What
>> conclusions have been reached on the question before? Has it ever
>> actually been done?
>
> _______________________________________________
> ringing-theory mailing list
> ringing-theory at bellringers.net
> http://bellringers.net/mailman/listinfo/ringing-theory_bellringers.net





More information about the ringing-theory mailing list